GAMMA-RAY SPECTRAL VARIABILITY OF CYG X-1

M. McConnell, J. Ryan

University of New Hampshire, Durham, NH

W. Collmar, V. Schönfelder, H. Steinle, A. Strong

Max Planck Institute (MPE), Garching, Germany

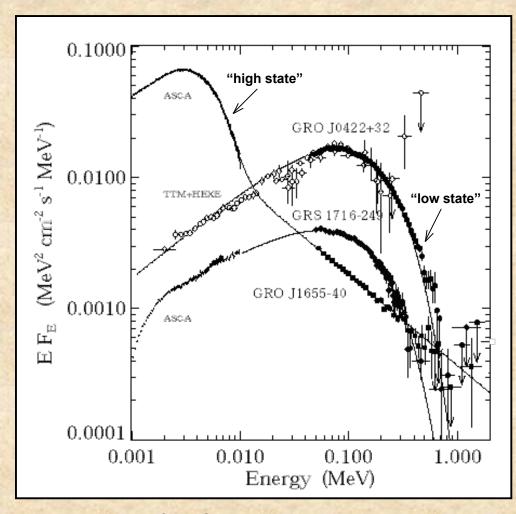
H. Bloemen, W. Hermsen, L. Kuiper

SRON - Utrecht, Utrecht, Netherlands

K. Bennett

Astrophysics Division, ESTEC, Noordwijk, Netherlands

B. Phlips


Universities Space Research Association, Washington, DC

W. Paciesas

University of Alabama, Huntsville, AL

Spectral States of Galactic Black Holes

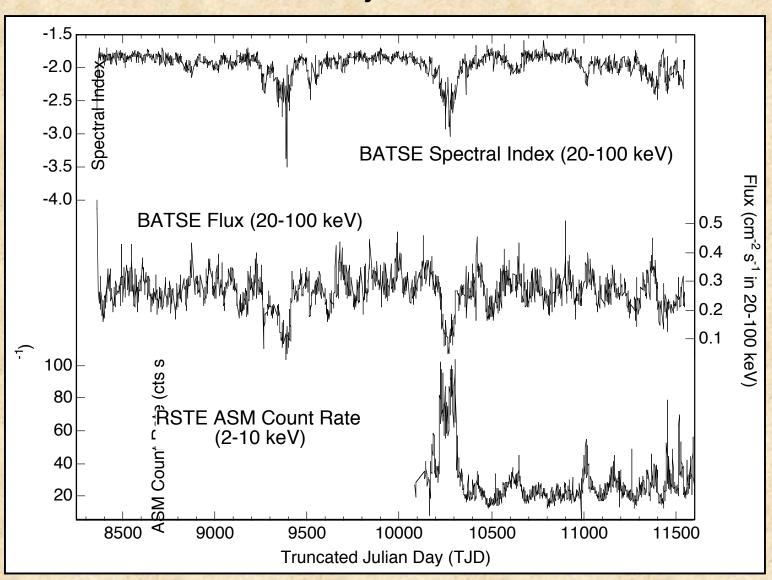
The behavior of Cygnus X-1 is much like that seen in other galactic black hole sources.

LOW STATE

"breaking γ-ray state"

low soft X-ray flux
high hard X-ray flux
"hard" X-ray spectrum

HIGH STATE


"power-law γ-ray state"
high soft X-ray flux
low hard X-ray flux
"soft" X-ray spectrum

The nature of the variability at energies above 1 MeV has not been clearly established.

(from Grove et al. 1998)

Long-Term Variability of Cyg X-1

These data cover nearly the entire CGRO mission.

COMPTEL Observations

- » COMPTEL provides the best data at energies above 1 MeV.
- » Most COMPTEL data collected during the low X-ray state.
- » COMPTEL also collected data during two high state periods:
 - <u>CGRO Viewing Period 318.1</u> February 1-8, 1994. Not seen by COMPTEL. Consistent with extrapolation of hard X-ray spectrum.
 - <u>CGRO Viewing Period 522.5</u>
 June 14-25, 1996. Significant signal seen by COMPTEL.
 Consistent with extrapolation of hard X-ray spectrum.
 (Level of hard X-ray flux higher than that during VP 318.1.)

Here we report on the results from an analysis of high state data collected during VP 522.5 and its comparison with a low state spectrum compiled from several weeks of CGRO data.

Low State Spectrum

McConnell et al., ApJ, 543, 928 (2000)

- » Contemporaneous broad-band spectrum using data from BATSE, OSSE and COMPTEL.
- » Data selected for those periods with consistent hard X-ray flux.
- » Photon spectrum shows evidence for emission out to ~ 5 MeV.
- » Model fits originally performed in photon space. Recent analysis now incorporates full response information for both BATSE and OSSE.
- » Standard Comptonization models are inadequate above ~1 MeV.
- » A hybrid thermal / non-thermal model can provide an acceptable fit.

The spectrum requires a non-thermal component at high energies.

Hybrid Thermal / Non-Thermal Model

The XSPEC model COMPPS has been used to fit the data.

Poutanen & Svensson – ApJ, 470, 249 (1996)

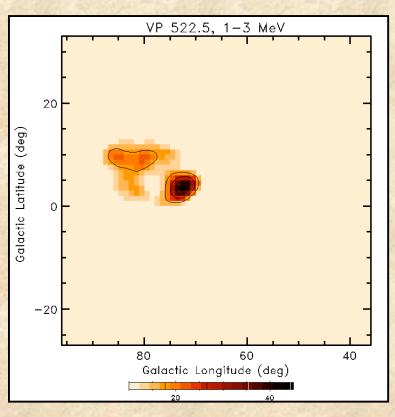
Models the data using an electron spectrum that consists of a thermal (Maxwellian) component plus a non-thermal (power-law) component.

The important parameters of the model include:

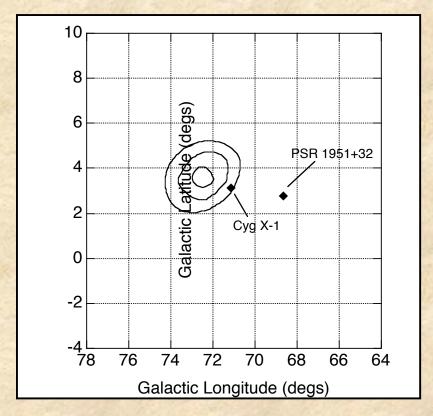
- the electron temperature (kT_e)
- power-law index (p_e) of the non-thermal component
- range $(\gamma_{min}$ and γ_{max}) of the non-thermal component
- optical depth of the corona (τ)

CGRO Viewing Period 522.5 (Target-of-Opportunity – high X-ray state)

- » Soft X-ray increase began on 10 May 1996 (RXTE, 2-12 keV).
- » Soft X-ray peak flux at 2 Crab on 19 May 1996 (pre-flare ~ 0.5 Crab)
- » Correlated decrease in hard X-rays (BATSE, 20-200 keV).
- » CGRO declared a target-of-opportunity (ToO) on June 13.
- » CGRO pointing (OSSE, COMPTEL, EGRET) began on June 14.
- » CGRO Z-axis pointed 5° from Cygnus X-1.
- » ToO observation (CGRO viewing period 522.5) lasted 11 days.

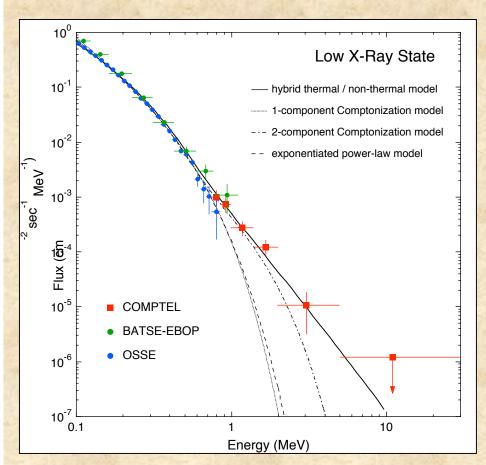

This high state period is clearly seen in the X-ray time history (panel 3) between TJD 10200 and TJD 10350.

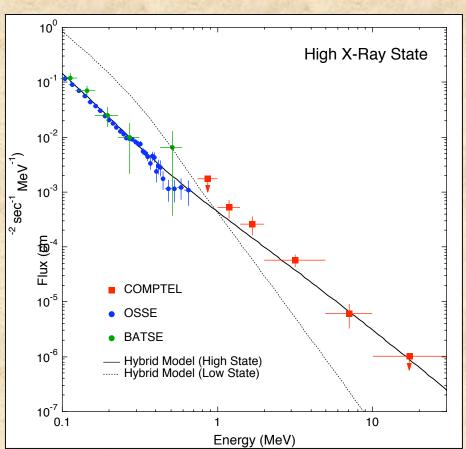
COMPTEL Imaging - VP 522.5


The 1-3 MeV COMPTEL image exhibited an unusually strong signal.

No signal was visible at lower energies (0.75-1 MeV).

This alone suggested that something unusual was taking place.

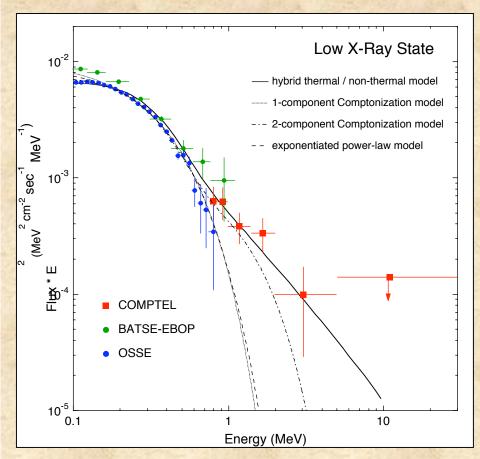

Likelihood Map

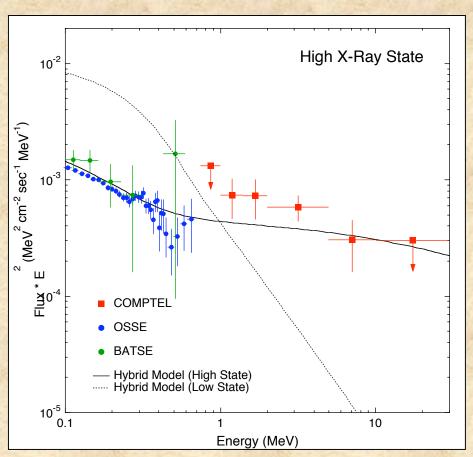


Location Contour Map (note different scale)

Flux Spectra

A comparison of low- and high-state spectra.





McConnell et al., ApJ, 543, 928 (2000)

E² x Flux Spectra

A comparison of low- and high-state spectra.

McConnell et al., ApJ, 543, 928 (2000)

High State Spectrum

- » A power-law with index of -2.6 provides a good fit to the data, with the power-law extending to at least 10 MeV.
- » The data is also well fit with a hybrid thermal / non-thermal model.
- » Good fits were obtained with three free parameters (kT_e , p_e , τ).
- » Two cases:
 - 1. Electron power law extending from $\gamma_{min} = 2$ to $\gamma_{max} = 1000$
 - 2. Electron power law extending from $\gamma_{min} = 2$ to $\gamma_{max} = 50$

The high energy power-law is inconsistent with emission from bulk motion Comptonization, which predicts a cutoff near 500 keV.

Low State vs. High State

Electron power-law range γ_{min} = 2 to γ_{max} = 1000

hybrid model fits to data > 100 keV

Errors represent estimated 90% confidence levels

Parameter	Low State	High State
kT_{e}	93 (+29,-12) keV	55 ±!8 keV
p_{e}	5.0 (+0.6,-0.4)	3.1 ± 0.4
τ	1.1 ± 0.4	1.0 (+0.7,-0.5)
χ,	0.933	0.877
ν	414	69

In the context of the hybrid model, the high state spectrum shows:

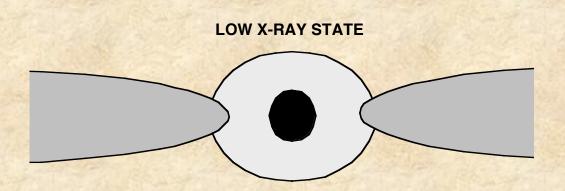
- 1) lower electron temperature
- 2) harder non-thermal electron component
- 3) no change in optical depth

Low State vs. High State

Electron power-law range $\gamma_{min} = 2$ to $\gamma_{max} = 50$

hybrid model fits to data > 100 keV

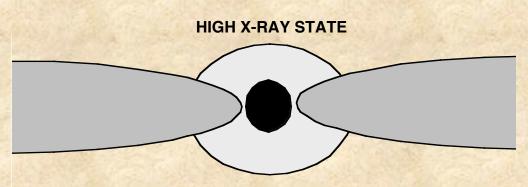
Errors represent estimated 90% confidence levels


Parameter	Low State	High State
kT _e	87 (+21,-10) keV	46 (+6,-4) keV
$\mathbf{p}_{\mathbf{e}}$	5.1 (+0.7,-0.5)	2.0 ± 0.5
τ	1.2 ± 0.5	2.1 ± 0.7
X _v	0.994	0.877
ν	414	69

In the context of the hybrid model, the high state spectrum shows:

- 1) lower electron temperature
- 2) harder non-thermal electron component
- 3) no change in optical depth

Physical Interpretation


The results are generally consistent with models that suggest a change in the inner disk radius (e.g., Poutanen & Coppi, 1998; Gierlinski et al. 1999)

LOW STATE

R_{in} of thermal disk is large more energy in corona larger kT_e, larger p_e

thermal component dominates

HIGH STATE

 R_{in} of thermal disk is small more energy in disk lower kT_e , smaller p_e

non-thermal component dominates

Summary

- » Composite CGRO spectra for both the low and high X-ray states.
- » The spectra exhibit bimodal spectral behavior, as seen in other galactic black hole candidates, with pivot point near 1 MeV.
- » Power-law spectrum of high state spectrum extends to at least 10 MeV, with no evidence for any cutoff.
- » This is inconsistent with bulk motion Comptonization models that predict a cutoff near 500 keV.
- » A hybrid thermal/non-thermal model can describe the data.
- » The results are generally consistent with a smaller inner disk radius for the high state (smaller kT_e during high state).
- » There is also evidence for additional non-thermal acceleration during high state (smaller p_e during high state).